Add like
Add dislike
Add to saved papers

Lipidomic alterations in lipoproteins of patients with mild cognitive impairment and Alzheimer's disease by asymmetrical flow field-flow fractionation and nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry.

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with the clinical symptom of the progressive loss of cognitive function and mild cognitive impairment (MCI) is a translational state between cognitive changes of normal aging and AD. Lipid metabolism and pathogenesis of Alzheimer's disease (AD) are closely linked. Despite obviously discrete lipidome constitutions across lipoproteins, lipidomic approaches of AD has been mostly conducted without considering lipoprotein-dependent alterations. This study introduces a combination of asymmetrical flow field-flow fractionation (AF4) and nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry (nUHPLC-ESI-MS/MS) for a comprehensive lipid profiling in different lipoprotein level of patients plasma with AD and amnestic MCI in comparison to age-matched healthy controls. Lipoproteins in plasma samples were size-sorted by a semi-preparative scale AF4, followed by non-targeted lipid identification and high speed targeted quantitation with nUHPLC-ESI-MS/MS. It shows 14 significantly altered high abundance lipids in AD, exhibiting >2-fold increases (p < 0.01) in LDL/VLDL including triacylglycerol, ceramide, phosphatidylethanolamine, and diacylglycerol. Three lipid species (triacylglycerol 50:1, diacylglycerol 18:1_18:1, and phosphatidylethanolamine 36:2) showing a strong correlation with the degree of brain atrophy were found as candidate species which can be utilized to differentiate the early stage of MCI when simple Mini-Mental State Examination results were statistically incorporated. The present study elucidated lipoprotein-dependent alterations of lipids in progression of MCI and further to AD which can be utilized for the future development of lipid biomarkers to enhance the predictability of disease progress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app