Add like
Add dislike
Add to saved papers

Xurography-based microfluidic algal biosensor and dedicated portable measurement station for online monitoring of urban polluted samples.

A critical need exists to develop rapid, in situ, and real-time tools to monitor the impact of pollution discharge toxicity on aquatic ecosystems. The present paper deals with the development of a novel, simple-to-use, low-cost, portable, and user-friendly algal biosensor. In this study, a complete and autonomous portable fluorimeter was developed to assess the A-chlorophyll fluorescence of microalgae, inserted by capillarity into low-cost and disposable xurography-based microfluidic chips. Three microalgae populations were used to develop the biosensor: Chlorella vulgaris, Pseudokirchneriella subcapitata, and Chlamydomonas reinhardtii. Biosensor feasibility and sensitivity parameters, such as algal concentration and light intensity, were optimized beforehand to calibrate the biosensor sensitivity with Diuron, a pesticide known to be very toxic for microalgae. Finally, the biosensor was employed in 10 aqueous urban polluted samples (7 urban wet-weather discharges and 3 wastewater) in order to prove its reliability, reproducibility, and performance in the detection of toxic discharges in the field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app