Add like
Add dislike
Add to saved papers

Transcriptional downregulation of miR-133b by REST promotes prostate cancer metastasis to bone via activating TGF-β signaling.

High avidity of bone metastasis is an important characteristic in prostate cancer (PCa). Downexpression of miR-133b has been reported to be implicated in the development, progression and recurrence in PCa. However, clinical significance and biological roles of miR-133b in bone metastasis of PCa remain unclear. Here we report that miR-133b is downregulated in PCa tissues and further decreased in bone metastatic PCa tissues. Downexpression of miR-133b positively correlates with advanced clinicopathological characteristics and shorter bone metastasis-free survival in PCa patients. Upregulating miR-133b inhibits invasion, migration in vitro and bone metastasis in vivo in PCa cells. Mechanistically, we find that miR-133b suppresses activity of TGF-β signaling via directly targeting TGF-β receptor I and II, which further inhibits bone metastasis of PCa cells. Our results further reveal that overexpression of REST contributes to miR-133b downexpression via transcriptional repression in PCa tissues. Importantly, silencing miR-133b enhances invasion and migration abilities in vitro and bone metastasis ability in vivo in REST-silenced PCa cells. The clinical correlation of miR-133b with TGFBRI, TGFBRII, REST and TGF-β signaling activity is verified in PCa tissues. Therefore, our results uncover a novel mechanism of miR-133b downexpression that REST transcriptionally inhibits miR-133b expression in PCa cells, and meanwhile support the notion that administration of miR-133b may serve as a rational regimen in the treatment of PCa bone metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app