Add like
Add dislike
Add to saved papers

The Successor Representation: Its Computational Logic and Neural Substrates.

Reinforcement learning is the process by which an agent learns to predict long-term future reward. We now understand a great deal about the brain's reinforcement learning algorithms, but we know considerably less about the representations of states and actions over which these algorithms operate. A useful starting point is asking what kinds of representations we would want the brain to have, given the constraints on its computational architecture. Following this logic leads to the idea of the successor representation, which encodes states of the environment in terms of their predictive relationships with other states. Recent behavioral and neural studies have provided evidence for the successor representation, and computational studies have explored ways to extend the original idea. This paper reviews progress on these fronts, organizing them within a broader framework for understanding how the brain negotiates tradeoffs between efficiency and flexibility for reinforcement learning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app