Add like
Add dislike
Add to saved papers

Design, synthesis and biological evaluation of 3-piperazinecarboxylate sarsasapogenin derivatives as potential multifunctional anti-Alzheimer agents.

A series of multifunctional 3-piperazinecarboxylate sarsasapogenin derivatives were designed and synthesized against Alzheimer's disease (AD). The protection against H2 O2 -triggered oxidative stress in PC12 cells, and inhibition on LPS-induced NO production in RAW264.7 cell lines in vitro by these derivatives were firstly evaluated. Most of the compounds showed better antioxidant and antiinflammatory activities compared with sarsasapogenin, especially AA34 and AA36. Structure-activity relationships revealed that benzyl group, electron-donating group and intramolecular hydrogen bond might be beneficial to enhancing their neuroprotective activities. Moreover, Aβ42 was the optimum predicted target based on the high 3D molecular similarity between compound AA36 and caprospinol. In the following experiments, AA36 significantly protected PC12 cells from Aβ-induced damage and improved learning and memory impairments in Aβ-injected mice. Thus AA36 is regarded as a potent anti-AD agent and N-substituted piperazinecarboxylate can be served as a promising structural unit for anti-AD drug design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app