JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Evidence of lipid rafts based on the partition and dynamic behavior of sphingomyelins.

Sphingomyelin (SM)-rich membrane nano-domains, called lipid rafts, have attracted the interest of researchers due to their potential involvement in the formation of signaling platform. Although there are many studies on lipid rafts, the direct observation of lipid rafts is still challenging owing to two critical reasons. One is the lack of an appropriate fluorescent probe mimicking the native behavior of raft lipids; fluorescent labeling often alters the intrinsic disposition of raft lipids. The other is their spatio-temporal stability; the size of lipid rafts is much smaller than the optical resolution of usual microscopy and their lifetime is much shorter than image acquisition duration. These issues are hampering the visualization of lipid rafts. Our review highlights the recent advances in microscopic techniques to visualize the partition and dynamic behavior of SMs, disclosing the detailed structure of lipid rafts. Moreover, we will elucidate the importance of SM-SM interactions in the stabilization of signaling platforms as lipid rafts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app