Add like
Add dislike
Add to saved papers

Growth of mesophilic Aeromonas salmonicida in an experimental model of nigiri sushi during cold storage.

The genus Aeromonas includes human pathogenic bacteria frequently isolated from seafood, and the increased consumption of ready-to-eat seafood poses new food safety issues regarding the presence of potentially pathogenic Aeromonas spp. in stored products for raw consumption, such as retail sushi with a shelf life of up to three days. This study assessed 1) the growth kinetics of a mesophilic A. salmonicida strain during storage at 4 °C and 8 °C in a nigiri sushi model, and 2) the strain variability in growth at pH ranging from 3.5 to 10 for a subset of mesophilic Aeromonas strains previously isolated from sushi. Inoculated slices of raw salmon were compared with and without rice. A predictive model for A. hydrophila (ComBase Predictor) did not sufficiently predict growth of the tested strain under the intrinsic conditions of nigiri sushi or salmon at both temperatures. Refrigeration alone (4 °C) did not inhibit growth of A. salmonicida on salmon. Within the first 72 h, representing the typical shelf life of retail sushi products, we observed a 10-fold increase in the concentration of the inoculated strain (including a lag-phase of approximately 34 h). Contact with acidified rice, resulting in a pH drop in the salmon, was the reason for the decreased bacterial viability in the nigiri sushi samples. However, the effect of acidification decreased at 8 °C, resulting in a 2-fold increase in the growth rate and a reduced lag-phase compared to refrigeration. Variability in the ability to grow in different pH levels was observed between strains. The highest color formation rates, representing cellular respiration analyzed in a phenotypic microarray system, were observed between pH 5 and 8. A few strains, including the A. salmonicida strain applied in the nigiri sushi model, were able to grow at pH 4.5 (at optimal temperature). The results demonstrated that mesophilic Aeromonas spp. can represent a microbiological hazard in retail sushi products during cold storage. Rice acidification in combination with low storage temperature (≤4 °C) are prerequisites to prevent growth of potentially pathogenic Aeromonas species during the relatively short shelf life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app