Add like
Add dislike
Add to saved papers

Gold nanorods-based thermosensitive hydrogel produces selective long-lasting regional anesthesia triggered by photothermal activation of Transient Receptor Potential Vanilloid Type-1 channels.

Long-lasting regional anesthesia and selective sensory block are useful in post-operative analgesia and treatment of pathological pain. Previous studies have demonstrated that activation of TRPV1 (Transient Receptor Potential Vanilloid Type-1) channels facilitated the potency of QX-314 for selective long-lasting regional anesthesia in vivo. Hydrogel is a solid jelly-like material covering a wide range of properties from soft and weak to hard and tough. Gold nanorods are nanoparticles, which can be used for hyperthermia by exposure to near-infrared radiation. We fabricated a gold nanorods and QX-314 containing hydrogel. The molecular weight of hydrogel was adjusted to achieve a targeted phase transition temperature. Gold nanorods with a desired photothermal conversion efficacy and QX-314 were mixed with hydrogel to produce a gold nanorods-QX-314/hydrogel nanocomposite. A rat model of sciatic nerve block was applied to evaluate the regional anesthetic effect of the gold nanorods-QX-314/hydrogel nanocomposite. Upon exposure to near-infrared irradiation, the gold nanorods-QX-314/hydrogel nanocomposite activated TRPV1 channels through photothermal conversion and release of QX-314 at the same time. The gold nanorods and QX-314 loaded hydrogel exhibited a long-lasting regional anesthetic effect with selective sensory function block. Sensory block duration of the nanocomposite was significantly longer than of 1% lidocaine (90.0 ± 12.2 vs. 37.5 ± 12.5 min, P < 0.01). Motor block by the nanocomposite was observed for only 40% of rats with significantly shorter duration than its sensory block (42.5 ± 17.1 vs. 90.0 ± 12.2 min, P < 0.01). The gold nanorods-QX-314/hydrogel nanocomposite can produce a selective long-lasing regional anesthetic effect in a rat model of sciatic nerve block.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app