Add like
Add dislike
Add to saved papers

Epidermal growth factor receptor inhibition with Gefitinib does not alter lung responses to mechanical ventilation in fetal, preterm lambs.

BACKGROUND: Epidermal growth factor receptor (EGFR) is important for airway branching and lung maturation. Mechanical ventilation of preterm lambs causes increases in EGFR and EGFR ligand mRNA in the lung. Abnormal EGFR signaling may contribute to the development of bronchopulmonary dysplasia.

HYPOTHESIS: Inhibition of EGFR signaling will decrease airway epithelial cell proliferation and lung inflammation caused by mechanical ventilation in preterm, fetal sheep.

METHODS: Following exposure of the fetal head and chest at 123±1 day gestational age and with placental circulation intact, fetal lambs (n = 4-6/group) were randomized to either: 1) Gefitinib 15 mg IV and 1 mg intra-tracheal or 2) saline IV and IT. Lambs were further assigned to 15 minutes of either: a) Injurious mechanical ventilation (MV) or b) Continuous positive airway pressure (CPAP) 5 cmH2O. After the 15 minute intervention, the animals were returned to the uterus and delivered after i) 6 or ii) 24 hours in utero.

RESULTS: MV caused lung injury and inflammation, increased lung mRNA for cytokines and EGFR ligands, caused airway epithelial cell proliferation, and decreased airway epithelial phosphorylated ERK1/2. Responses to MV were unchanged by Gefitinib. Gefitinib altered expression of EGFR mRNA in the lung and liver of both CPAP and MV animals. Gefitinib decreased the liver SAA3 mRNA response to MV at 6 hours. There were no differences in markers of lung injury or inflammation between CPAP animals receiving Gefitinib or saline.

CONCLUSION: Inhibition of the EGFR pathway did not alter acute lung inflammation or injury from mechanical ventilation in preterm sheep.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app