Add like
Add dislike
Add to saved papers

Multiple robust estimation of marginal structural mean models for unconstrained outcomes.

Biometrics 2018 July 14
We consider estimation, from longitudinal observational data, of the parameters of marginal structural mean models for unconstrained outcomes. Current proposals include inverse probability of treatment weighted and double robust (DR) estimators. A difficulty with DR estimation is that it requires postulating a sequence of models, one for the each mean of the counterfactual outcome given covariate and treatment history up to each exposure time point. Most natural models for such means are often incompatible. Robins et al., () proposed a parameterization of the likelihood which implies compatible parametric models for such means. Their parameterization has not been exploited to construct DR estimators and one goal of this article is to fill this gap. More importantly, exploiting this parameterization we propose a multiple robust (MR) estimator that confers even more protection against model misspecification than DR estimators. Our methods are easy to implement as they are based on the iterative fit of a sequence of weighted regressions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app