Add like
Add dislike
Add to saved papers

Co 3 Fe 7 /nitrogen-doped graphene nanoribbons as bi-functional electrocatalyst for oxygen reduction and oxygen evolution.

Nanotechnology 2018 October 13
In this work, we report a one-pot solvothermal strategy to synthesize Co3 Fe7 incorporated graphene nanoribbons (Co3 Fe7 ). An improved bi-functional electrocatalytic activity over the traditional electrocatalysts is exhibited by the Co3 Fe7 /nitrogen-doped graphene nanoribbon (NGNR) composite. For instance, this composite Co3 Fe7 /NGNRs depicted a lower overpotential of 350 mV than NGNRs (380 mV) and IrO2 (450 mV) to sustain 10 mA cm-2 for an oxygen evolution reaction in 1.0 M KOH. Furthermore, during an oxygen reduction reaction, the catalyst exhibited a four-electron pathway and it is interesting to note that its electrocatalytic behavior is on a par with commercial Pt/C. The enhancement in the electrochemical performance can be attributed to the synergistic effect that stems from the electrocatalytically active nitrogen atoms and metal alloy nanoparticles distributed uniformly over the graphene matrix. This unique composition of electrocatalyst is extremely beneficial for practical applications in fuel cells and metal-air batteries due to its high stability and sustained electrochemical activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app