Add like
Add dislike
Add to saved papers

Massively Parallel Implementation of Sequence Alignment with Basic Local Alignment Search Tool Using Parallel Computing in Java Library.

Basic Local Alignment Search Tool (BLAST) is an essential algorithm that researchers use for sequence alignment analysis. The National Center for Biotechnology Information (NCBI)-BLAST application is the most popular implementation of the BLAST algorithm. It can run on a single multithreading node. However, the volume of nucleotide and protein data is fast growing, making single node insufficient. It is more and more important to develop high-performance computing solutions, which could help researchers to analyze genetic data in a fast and scalable way. This article presents execution of the BLAST algorithm on high performance computing (HPC) clusters and supercomputers in a massively parallel manner using thousands of processors. The Parallel Computing in Java (PCJ) library has been used to implement the optimal splitting up of the input queries, the work distribution, and search management. It is used with the nonmodified NCBI-BLAST package, which is an additional advantage for the users. The result application-PCJ-BLAST-is responsible for reading sequence for comparison, splitting it up and starting multiple NCBI-BLAST executables. Since I/O performance could limit sequence analysis performance, the article contains an investigation of this problem. The obtained results show that using Java and PCJ library it is possible to perform sequence analysis using hundreds of nodes in parallel. We have achieved excellent performance and efficiency and we have significantly reduced the time required for sequence analysis. Our work also proved that PCJ library could be used as an effective tool for fast development of the scalable applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app