Add like
Add dislike
Add to saved papers

The Influence of Carbosilane Nanosegregation on the Dynamics in 'de Vries-type' Liquid Crystals.

The mesogens QL32-6, QL33-6 and QL-34-6 contain 5-phenylpyrimidine cores and terminal nanosegregating carbosilane end groups of different lengths and are known to exhibit 'de Vries-type' properties of varying strength. We report a systematic study of the influence of the nanosegregating sublayer on the dynamics and rotational viscosities of the collective modes in the smectic A* (SmA*) and smectic C* (SmC*) phase using dielectric spectroscopy. It was found that the dynamics of the Goldstone mode corresponding to phase angle fluctuations are almost not affected while the relaxation time and rotational viscosity of the soft mode are influenced by the degree of nanosegregation. In other words, the nanosegregating sublayer does not influence the dynamics of ferroelectric switching in the SmC* phase, but is critical in inducing 'de Vries-type' properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app