Add like
Add dislike
Add to saved papers

Potential dependent changes in the structural and dynamical properties of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide on graphite electrodes revealed by molecular dynamics simulations.

An understanding of the characteristics of ionic liquid/graphite interfaces is highly important for electrochemical devices such as batteries and capacitors. In this paper, we report microscopic studies of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMIM-TFSI) on charged graphite electrodes using molecular dynamics simulations to reveal the two-dimensional arrangement of the ions and their dynamics at the interfaces. Analyses of surface distribution and mobility of ions revealed that the ion arrangement changes from a bilayer type to a checkerboard type with increasing applied potential. Whereas the bilayer type arrangement increases the ionic mobility parallel to the interfaces with the negative potential, the ions arranged in the checkerboard type tend to localize because of the increased lateral electrostatic interactions. Furthermore, we revealed that the inhomogeneity of ionic distribution at the positive potential propagates up to a few nanometers from the interface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app