Add like
Add dislike
Add to saved papers

Submicron Size Particles of a Murine Monoclonal Antibody Are More Immunogenic Than Soluble Oligomers or Micron Size Particles Upon Subcutaneous Administration in Mice.

Protein aggregates are one of the several risk factors for undesired immunogenicity of biopharmaceuticals. However, it remains unclear which features determine whether aggregates will trigger an unwanted immune response. The aim of this study was to determine the effect of aggregates' size on their relative immunogenicity. A monoclonal murine IgG1 was stressed by exposure to low pH and elevated temperature followed by stirring to obtain aggregates widely differing in size. Aggregate fractions enriched in soluble oligomers, submicron size particles and micron size particles were isolated via centrifugation or size-exclusion chromatography and characterized physicochemically. The secondary and tertiary structures of aggregates were altered in a similar way for all the fractions, while no substantial chemical degradation was observed. Development of anti-drug antibodies was measured after subcutaneous administration of each enriched fraction to BALB/c mice. Among all tested fractions, the most immunogenic was the one highly enriched in submicron size particles (∼100-1000 nm). Fractions composed of micron size (>1-100 μm) particles or soluble oligomers (<100 nm) were not immunogenic under the dosing regimen studied in this work. These results show that aggregate size is an important factor for protein immunogenicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app