Add like
Add dislike
Add to saved papers

The presence of a feeder layer improves human corneal endothelial cell proliferation by altering the expression of the transcription factors Sp1 and NFI.

Based on the use of tissue-cultured human corneal endothelial cells (HCECs), cell therapy is a very promising avenue in the treatment of corneal endothelial pathologies such as Fuchs' dystrophy, and post-surgical corneal edema. However, once in culture, HCECs rapidly lose their phenotypic and physiological characteristics, and are therefore unsuitable for the reconstruction of a functional endothelial monolayer. Expression of NFI, a transcription factor that can either function as an activator or a repressor of gene transcription, has never been examined in endothelial cells. The present study therefore aimed to determine the impact of a non-proliferating, lethally irradiated i3T3 feeder layer on the maintenance of HCEC's morphological characteristics, and both the expression and stability of Sp1 (a strong transcriptional activator) and NFI in such cells. The typical morphology of endothelial cells was best maintained when 8 × 103 /cm2 HCECs were co-cultured in the presence of 2 × 104  cells/cm2 i3T3. HCECs were found to express both Sp1 and NFI in vitro. Also, the presence of i3T3 led to higher levels of Sp1 and NFI in HCECs, with a concomitant increase in their DNA binding levels (assessed by electrophoretic mobility shift assays (EMSA)). Specifically, i3T3 increased the expression of the NFIA, NFIB and NFIC isoforms, without a noticeable increase in their mRNAs (as revealed by gene profiling on microarray). Gene profiling analysis also identified a few feeder layer-dependent, differentially regulated genes whose protein products may contribute to improving the properties of HCECs in culture. Therefore, co-culturing HCECs with an i3T3 feeder layer clearly improves their morphological characteristics by maintaining stable levels of Sp1 and NFI in cell culture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app