Add like
Add dislike
Add to saved papers

Roll-to-Roll Processing of Silicon Carbide Nanoparticle-Deposited Carbon Fiber for Multifunctional Composites.

This work provides a proof of principle that a high volume, continuous throughput fiber coating process can be used to integrate semiconducting nanoparticles on carbon fiber surfaces to create multifunctional composites. By embedding silicon carbide nanoparticles in the fiber sizing, subsequent composite fabrication methods are used to create unidirectional fiber-reinforced composites with enhanced structural health monitoring (SHM) sensitivity and increased interlaminar strength. Additional investigations into the mechanical damping behavior of these functional composites reveal a significantly increased loss factor at the glass-transition temperature ranging from a 65 to 257% increase. Composites with both increased interlaminar strength and SHM sensitivity are produced from a variety of epoxy and silicon carbide nanoparticle concentrations. Overall, the best performing composite in terms of combined performance shows an increase of 47.5% in SHM sensitivity and 7.7% increase in interlaminar strength. This work demonstrates successful and efficient integration of nanoparticle synthesis into large-scale, structural applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app