Add like
Add dislike
Add to saved papers

Divergent strategies in pre- and postzygotic reproductive isolation between two closely related Dianthus species.

Quantifying the relative contribution of multiple isolation barriers to gene flow between recently diverged species is essential for understanding speciation processes. In parapatric populations, local adaptation is thought to be a major contributor to the evolution of reproductive isolation. However, extrinsic postzygotic barriers assessed in reciprocal transplant experiments are often neglected in empirical assessments of multiple isolation barriers. We analyzed multiple isolation barriers between two closely related species of the plant genus Dianthus, a genus characterized by the most rapid species diversification in plants reported so far. Although D. carthusianorum L. and D. sylvestris Wulf. can easily be hybridized in crossing experiments, natural hybrids are rare. We found that in parapatry, pollinator-mediated prezygotic reproductive isolation barriers are important for both D. carthusianorum (0.761) and D. sylvestris (0.468). In contrast to D. carthusianorum, high hybrid viability in D. sylvestris (-0.491) was counteracted by strong extrinsic postzygotic isolation (0.900). Our study highlights the importance of including reciprocal transplant experiments for documenting extrinsic postzygotic isolation and demonstrates clearly divergent strategies and hence asymmetric pre- and postzygotic reproductive isolation between closely related species. It also suggests that pollinator-mediated and ecological isolation could have interacted in synergistic ways, further stimulating rapid speciation in Dianthus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app