Add like
Add dislike
Add to saved papers

Identification of a tyrosine switch in copper-haem nitrite reductases.

IUCrJ 2018 July 2
There are few cases where tyrosine has been shown to be involved in catalysis or the control of catalysis despite its ability to carry out chemistry at much higher potentials (1 V versus NHE). Here, it is shown that a tyrosine that blocks the hydrophobic substrate-entry channel in copper-haem nitrite reductases can be activated like a switch by the treatment of crystals of Ralstonia pickettii nitrite reductase ( Rp NiR) with nitric oxide (NO) (-0.8 ± 0.2 V). Treatment with NO results in an opening of the channel originating from the rotation of Tyr323 away from AspCAT 97. Remarkably, the structure of a catalytic copper-deficient enzyme also shows Tyr323 in the closed position despite the absence of type 2 copper (T2Cu), clearly demonstrating that the status of Tyr323 is not controlled by T2Cu or its redox chemistry. It is also shown that the activation by NO is not through binding to haem. It is proposed that activation of the Tyr323 switch is controlled by NO through proton abstraction from tyrosine and the formation of HNO. The insight gained here for the use of tyrosine as a switch in catalysis has wider implications for catalysis in biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app