Add like
Add dislike
Add to saved papers

Siegesbeckia pubescens Makino inhibits Pam 3 CSK 4 -induced inflammation in RAW 264.7 macrophages through suppressing TLR1/TLR2-mediated NF-κB activation.

Background: Siegesbeckia pubescens Makino (SP) is one of the important plant origins for the anti-inflammatory Chinese herbal medicine of Siegesbeckiae Herba. The current investigations indicated that the anti-inflammatory effects of SP were associated with the toll-like receptors (TLRs)-mediated nuclear factor-κB (NF-κB) and the mitogen-activated protein kinase (MAPK) signaling pathways.

Methods: Raw 264.7 macrophages were pretreated with the 50% ethanol extract of SP (SPE, 50-200 µg/mL) and then co-treated with Pam3 CSK4 (200 ng/mL) for another 12 h. The inhibitory effect of SPE on Pam3 CSK4 -stimulated NO release and post-inflammatory cytokines secretions were determined using Griess reagent and Elisa kits, respectively. The influence of SPE on NF-κB and MAPKs signaling relevant proteins was measured by Western blotting analysis, while the intracellular nitric oxide (NO) generation and NF-κB/p65 nuclear translocation were determined using Leica TCS SP8 laser scanning confocal microscope. Moreover, the effect of SPE on luciferase reporter gene in NF-κB-luc DNA transfected raw 264.7 cells was determined using the Dual-Glo luciferase assay system kit.

Results: SPE dose-dependently (50-200 µg/mL) attenuated Pam3 CSK4 -induced NO release, post-inflammatory cytokines (IL-6, TNF-α and MCP-1) secretions and intracellular NO generation in raw 264.7 cells. Biologically, SPE suppressed Pam3 CSK4 -induced expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), phosphorylation of NF-κB/p65 and IκBα, but did not significantly show effect on the proteins involved in MAPKs signaling (p38, ERK and JNK). The results were further confirmed by NF-κB-luc reporter gene assay and p65 nuclear translocation assay.

Conclusions: In conclusion, SPE ameliorated Pam3 CSK4 -induced inflammation in raw 264.7 cells through suppressing TLR 1/2-mediated NF-κB activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app