JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Ultrafast dynamics-driven biomolecular recognition where fast activities dictate slow events.

In general, biological macromolecules require significant dynamical freedom to carry out their different functions, including signal transduction, metabolism, catalysis and gene regulation. Effectors (ligands, DNA and external milieu, etc) are considered to function in a purely dynamical manner by selectively stabilizing a specific dynamical state, thereby regulating biological function. In particular, proteins in presence of these effectors can exist in several dynamical states with distinct binding or enzymatic activity. Here, we have reviewed the efficacy of ultrafast fluorescence spectroscopy to monitor the dynamical flexibility of various proteins in presence of different effectors leading to their biological activity. Recent studies demonstrate the potency of a combined approach involving picosecond-resolved Forster resonance energy transfer, polarisation-gated fluorescence and time-dependent stokes shift for the exploration of ultrafast dynamics in biomolecular recognition of various protein molecules. The allosteric protein-protein recognition following differential protein-DNA interaction is shown to be a consequence of some ultrafast segmental motions at the C-terminal of Gal repressor protein dimer with DNA operator sequences OE and OI . Differential ultrafast dynamics at the C-terminal of λ-repressor protein with two different operator DNA sequences for the protein-protein interaction with different strengths is also reviewed. We have also systemically briefed the study on the role of ultrafast dynamics of water molecules on the functionality of enzyme proteins alpha-chymotrypsin and deoxyribonuclease I. The studies on the essential ultrafast dynamics at the active site of the enzyme alpha-chymotrypsin by using an anthraniloyl fluorescent extrinsic probe covalently attached to the serine-195 residue for the enzymatic activity at homeothermic condition has also been reviewed. Finally, we have highlighted the evidence that a photoinduced dynamical event dictates the molecular recognition of a photochromic ligand, dihydroindolizine with the serine protease alpha-chymotrypsin and with a liposome (L-a-phosphatidylcholine).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app