Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

NtRLK5, a novel RLK-like protein kinase from Nitotiana tobacum, positively regulates drought tolerance in transgenic Arabidopsis.

Receptor-like protein kinase (RLKs) plays pivotal roles in plant growth and development as well as stress responses. However, little is known about the function of RLKs in Nitotiana tobacum. In the present study, we present data on NtRLK5, a novel RLK-like gene isolated from Hongda (Nitotiana tobacum L.). Expression profile analysis revealed that NtRLK5 was strongly induced by drought and salt stresses. Transient expression of NtRLK5-GFP fusion protein in protoplast showed that NtRLK5 was localized to plasma membrane. Overexpression of NtRLK5 conferred enhanced drought tolerance in transgenic Arabidopsis plants, which was attributed to not only the lower malondialdehyde (MDA) and H2 O2 contents, but also the higher antioxidant enzymes activities. Moreover, the expression of several antioxidation- and stress-related genes was also significantly up-regulated in NtRLK5 transgenic plants under drought condition. Taken together, the results suggest that NtRLK5 functions as a positive regulator in drought tolerance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app