Add like
Add dislike
Add to saved papers

Electrodeposition of Zwitterionic PEDOT Films for Conducting and Antifouling Surfaces.

Conferring antifouling properties can extend the use of conducting polymers in biosensors and bioelectronics under complex biological conditions. On the basis of the antifouling properties of a series of zwitterionic polymers, we synthesized new thiophene-based compounds bearing a phosphorylcholine, carboxybetaine, or sulfobetaine pendant group. The monomers were synthesized by a facile reaction of thiol-functionalized 3,4-ethylenedioxythiophene with zwitterionic methacrylates. Electrochemical copolymerization was performed to deposit zwitterionic poly(3,4-ethylenedioxythiophene) (PEDOT) films with tunable conducting and antifouling properties on a conducting substrate. Electrochemical impedance spectroscopy showed that the conductivity and capacitance decreased with increasing zwitterionic content in the films. Protein adsorption and cell adhesion studies showed the effects of the type and content of zwitterions on the antifouling characteristics. Optimization of the electrodeposition conditions enabled development of both conducting and antifouling polymer films. These antifouling conjugated functional polymers have promising applications in biological environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app