Add like
Add dislike
Add to saved papers

Synthesis of Modular Brush Polymer-Protein Hybrids Using Diazotransfer and Copper Click Chemistry.

Bioconjugate Chemistry 2018 August 16
Proteoglycans are important brush-like biomacromolecules, which serve a variety of functions in the human body. While protein-bottlebrush hybrids are promising proteoglycan mimics, many challenges still exist to robustly produce such polymers. In this paper, we report the modular synthesis of protein-brush hybrids containing elastin-like polypeptides (ELP) as model proteins by copper-catalyzed azide-alkyne cycloaddition. We exploit the recently discovered imidazole-1-sulfonyl azide (ISA) in a diazotransfer reaction to introduce an N-terminal azide onto an ELP. Next, we use a click reaction to couple the azido-ELP to an alkyne-terminated amine-rich polymer followed by a second diazotransfer step to produce an azide-rich backbone that serves as a scaffold. Finally, we used a second click reaction to graft alkyne-terminated poly(oligoethylene glycol methacrylate) (POEGMA) bristles to the azide-rich backbone to produce the final protein-bottlebrush hybrid. We demonstrate the effectiveness of this synthetic path at each step through careful characterization with 1 H NMR, FTIR, GPC, and diagnostic test reactions on SDS-PAGE. Final reaction products could be consistently obtained for a variety of different molecular weight backbones with final total grafting efficiencies around 70%. The high-yielding reactions employed in this highly modular approach allow for the synthesis of protein-bottlebrush hybrids with different proteins and brush polymers. Additionally, the mild reaction conditions used have the potential to avoid damage to proteins during synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app