JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Constitutive Activation of the Nutrient Sensor mTORC1 in Myeloid Cells Induced by Tsc1 Deletion Protects Mice from Diet-Induced Obesity.

SCOPE: To test whether myeloid cells Tsc1 deletion and therefore constitutive activation of the nutrient sensor mTORC1 protects from high-fat diet (HFD)-induced obesity, glucose intolerance, and adipose tissue inflammation.

METHODS AND RESULTS: Mice with Tsc1 deletion in myeloid cells (MTsc1KO) and littermate controls (MTsc1WT) were fed with HFD for 8 weeks and evaluated for body weight, glucose homeostasis, and adipose tissue inflammation. MTsc1KO mice were protected from HFD-induced obesity and glucose intolerance. MTsc1KO, however, displayed, independently of the diet, abnormal behavior, episodes of intense movement, and muscle spasms followed by temporary paralysis. To investigate whether obesity protection was due to myeloid cells Tsc1 deletion, bone marrow was transplanted from MTsc1WT and MTsc1KO into irradiated C57BL6/J mice. Mice transplanted with MTsc1KO bone marrow displayed reduced body weight gain, adiposity, and inflammation, and enhanced energy expenditure, glucose tolerance and adipose tissue M2 macrophage content upon HFD feeding, in the absence of abnormal behavior. In vitro, Tsc1 deletion increased in a mTORC1-dependent manner macrophage polarization to M2 profile and mRNA levels of fatty acid binding protein 4 and PPARγ.

CONCLUSION: Constitutive mTORC1 activation in myeloid cells protects mice from HFD-induced obesity, adipose tissue inflammation, and glucose intolerance by promoting macrophage polarization to M2 pro-resolution profile and increasing energy expenditure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app