Add like
Add dislike
Add to saved papers

Synthesis of three triterpene series and their activity against respiratory syncytial virus.

The human respiratory syncytial virus (hRSV) is a leading cause of hospitalization due to acute lower respiratory infection especially in infants and young children, sometimes causing fatal cases. The monoclonal antibody palivizumab is one of the available options for preventing this virus, and at the moment there are several hRSV vaccine trials underway. Unfortunately, the only drug option to treat hRSV infection is ribavirin, which can be used in severe high-risk cases. For this reason, new medicines are needed and, in this context, the triterpenes and their derivatives are promising alternatives, since many of them have shown important antiviral activity, such as bevirimat. Therefore, we report three series of triterpene (betulin (BE), betulinic acid (BA), and ursolic acid (UA)) derivatives tested against hRSV. The derivatives were synthesized by using commercial anhydrides in an easy and inexpensive step reaction. For the antiviral assay, A549 cells were infected by hRSV and after 96 h of compound or ribavirin (positive control) treatment, the cell viability was tested by MTT assay. DMSO, non-infected cells and infected cells without treatment were used as negative control. The triterpene esterification at the hydroxyl group resulted in 17 derivatives. The 3,28-di-O-acetylbetulin derivative (1a) showed the best results for cell viability, and real-time PCR amplification was performed for 1a treatment. Remarkably, one new anti-hRSV prototype was obtained through an easy synthesis of BE, which shall represent an alternative for a new lead compound for anti-hRSV therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app