Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Combination of resveratrol and 5-azacytydine improves osteogenesis of metabolic syndrome mesenchymal stem cells.

Endocrine disorders have become more and more frequently diagnosed in humans and animals. In horses, equine metabolic syndrome (EMS) is characterized by insulin resistance, hyperleptinemia, hyperinsulinemia, inflammation and usually by pathological obesity. Due to an increased inflammatory response in the adipose tissue, cytophysiological properties of adipose derived stem cells (ASC) have been impaired, which strongly limits their therapeutic potential. Excessive accumulation of reactive oxygen species, mitochondria deterioration and accelerated ageing of those cells affect their multipotency and restrict the effectiveness of the differentiation process. In the present study, we have treated ASC isolated from EMS individuals with a combination of 5-azacytydine (AZA) and resveratrol (RES) in order to reverse their aged phenotype and enhance osteogenic differentiation. Using SEM and confocal microscope, cell morphology, matrix mineralization and mitochondrial dynamics were assessed. Furthermore, we investigated the expression of osteogenic-related genes with RT-PCR. We also investigated the role of autophagy during differentiation and silenced PARKIN expression with siRNA. Obtained results indicated that AZA/RES significantly enhanced early osteogenesis of ASC derived from EMS animals. Increased matrix mineralization, RUNX-2, collagen type I and osteopontin levels were noted. Furthermore, we proved that AZA/RES exerts its beneficial effects by modulating autophagy and mitochondrial dynamics through PARKIN and RUNX-2 activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app