Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase.

Direct and mediated electron transfer (DET and MET) in enzyme electrodes with a novel flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from fungi are compared for the first time. DET is achieved by placing a single-walled carbon nanotube (CNT) between GDH and a flat gold electrode where the CNT is close to FAD within the distance for DET. MET is induced by using a free electron transfer mediator, potassium hexacyanoferrate, and shuttles electrons from FAD to the gold electrode. Cyclic voltammetry shows that the onset potential for glucose response current in DET is smaller than in MET, and that the distinct redox current peak pairs in MET are observed whereas no peaks are found in DET. The chronoamperometry with respect to a glucose biosensor shows that (i) the response in DET is more rapid than in MET; (ii) the current at more than +0.45V in DET is larger than the current at the current-peak potential in MET; (iii) a DET electrode covers the glucose concentration range for clinical requirements and is not susceptible to interfering agents at +0.45 V; and (iv) a DET electrode with the novel fungal FAD-GDH does not affect sensing accuracy in the presence of up to 5 mM xylose, while it often shows a similar response level to glucose with other conventionally used fungus-derived FAD-GDHs. It is concluded that our DET system overcomes the disadvantage of MET.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app