Add like
Add dislike
Add to saved papers

Biomimetic approaches for tissue engineering.

Advancement in medical technologies, emergence of new diseases and need for quick and effective treatments have increased the requirement for unique and distinct materials. A plethora of materials in various forms, shapes and sizes have been developed from polymers, metals and ceramics and extensively explored for both in vitro and in vivo applications. When used inside the body, biomaterials include metals, polymers and ceramics typically as implants, scaffolds, drug or gene carriers and also as protective agents. Although various materials are used for biomedical products, natural polymers are preferred over synthetic or metallic materials since they have better biocompatibility and ability to degrade in vivo without releasing toxic substances. In addition to the material, the structure and properties of the biomedical device/product plays a crucial role, particularly, when used for in vivo applications. It is desirable that the materials or products developed resemble the structure and replicate the biological functions in the body. For instance, 3D, nanofibrous structures similar to the extracellular matrix are considered suitable as tissue engineering scaffolds. Hence, extensive studies have been done to biomimic the biological systems and develop biomedical materials and devices using natural and synthetic polymers. For instance, successful replication of the biomineralization and bone formation and regeneration of tissue have been done. There are unlimited choice of materials, approaches and potential products that can be developed using the biomimetic approach. In this review, we provide an overview of the materials and methods used to develop biomimetic products for various medical applications. The objective of this study to provide readers with information on the various methods, materials and approaches that can be used to develop biomimetic materials to address the challenges and needs of the medicine and health care industries. This manuscript is restricted to discussions on biomimetic approaches for tissue engineering applications. However, there are considerable other medical applications of biomimetic materials which are not part of this review.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app