Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Observation of Gap Opening in 1T' Phase MoS 2 Nanocrystals.

Nano Letters 2018 August 9
Two-dimensional (2D) transition metal dichalcogenides (TMDs) manifest in various polymorphs, which deliver different electronic properties; the most prominent among them include the semiconducting 2H phase and metallic 1T (or distorted 1T' phase) phase. Alkali metal intercalation or interface strain has been used to induce semiconductor-to-metal transition in a monolayer MoS2 sheet, leading to exotic quantum states or improved performance in catalysis. However, the direct growth of 1T or 1T' phase MoS2 is challenging due to its metastability. Here, we report MBE growth of isolated 1T' and 2H MoS2 nanocrystals on a Au substrate; these nanocrystals can be differentiated unambiguously by their electronic states using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). By studying the initial stages of nucleation during molecular beam epitaxy (MBE) of MoS2 , we could identify atomic clusters (30-50 atoms) with intralayer stacking corresponding to 1T' and 2H separately, which suggests a deterministic growth mechanism from initial nuclei. Furthermore, a topological insulator type behavior was observed for the 1T' MoS2 crystals, where an energy gap opening of 80 meV was measured by STS in the basal plane at 5 K, with the edge of the nanocrystals remaining metallic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app