Add like
Add dislike
Add to saved papers

Enhanced Base-Free Formic Acid Production from CO 2 on Pd/g-C 3 N 4 by Tuning of the Carrier Defects.

ChemSusChem 2018 September 12
CO2 hydrogenation is attracting increasing attention as a sustainable route to produce formic acid, a commodity and potential energy vector. Here, bifunctional catalysts comprising metal nanoparticles deposited on bulk graphitic carbon nitride were assessed under base-free conditions, identifying supported Pd as the best performer. The catalyst productivity was enhanced by maximizing the edge-defects of the g-C3 N4 carrier, amino groups able to activate CO2 , and by generating welldispersed 5 nm Pd particles, required to split H2 . Bottom-up synthesis methods, that is, hard-templating and carbon enrichment upon polymerization, and top-down strategies, that is, thermal exfoliation of the as-prepared solid, were explored to boost the defects, the nature and density of which were evaluated by thermal and (in situ) spectroscopic techniques. After optimization of temperature, pressure, and reaction time, a 20 times higher turnover frequency compared with the best Pd/g-C3 N4 catalyst reported producing formic acid from CO2 without base was attained. This activity level was retained upon recycling with intermediate catalyst regeneration at mild temperature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app