Add like
Add dislike
Add to saved papers

Adaptive sonar call timing supports target tracking in echolocating bats.

Echolocating bats dynamically adapt the features of their sonar calls as they approach obstacles and track targets. As insectivorous bats forage, they increase sonar call rate with decreasing prey distance, and often embedded in bat insect approach sequences are clusters of sonar sounds, termed sonar sound groups (SSGs). The bat's production of SSGs has been observed in both field and laboratory conditions, and is hypothesized to sharpen spatiotemporal sonar resolution. When insectivorous bats hunt, they may encounter erratically moving prey, which increases the demands on the bat's sonar imaging system. Here, we studied the bat's adaptive vocal behavior in an experimentally controlled insect-tracking task, allowing us to manipulate the predictability of target trajectories and measure the prevalence of SSGs. With this system, we trained bats to remain stationary on a platform and track a moving prey item, whose trajectory was programmed either to approach the bat, or to move back and forth, before arriving at the bat. We manipulated target motion predictability by varying the order in which different target trajectories were presented to the bats. During all trials, we recorded the bat's sonar calls and later analysed the incidence of SSG production during the different target tracking conditions. Our results demonstrate that bats increase the production of SSGs when target unpredictability increases, and decrease the production of SSGs when target motion predictability increases. Furthermore, bats produce the same number of sonar vocalizations irrespective of the target motion predictability, indicating that the animal's temporal clustering of sonar call sequences to produce SSGs is purposeful, and therefore involves sensorimotor planning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app