Add like
Add dislike
Add to saved papers

Tumor Dendritic Cells (DCs) Derived from Precursors of Conventional DCs Are Dispensable for Intratumor CTL Responses.

Journal of Immunology 2018 August 16
The success of adoptive CTL therapy for cancer depends on interactions between tumor-infiltrating CTLs and cancer cells as well as other cells and molecules in the tumor microenvironment. Tumor dendritic cells (DCs) comprise several subsets: CD103+ CD11b- DC1 and CD11b+ CD64- DC2, which originate from circulating precursors of conventional DCs, and CD11b+ CD64+ DC3, which arise from monocytes. It remains controversial which of these subset(s) promotes intratumor CTL proliferation, expansion, and function. To address this issue, we used the Zbtb46-DTR-transgenic mouse model to selectively deplete DC1 and DC2 from tumors and lymphoid tissues. Wild-type and Zbtb46-DTR bone marrow chimeras were inoculated with B16 melanoma cells that express OVA and were treated with OT-1 CTLs. We found that depletion of DCs derived from precursors of conventional DCs in Zbtb46-DTR bone marrow chimeras abolished CTL proliferation and expansion in tumor-draining lymph nodes. By contrast, intratumor CTL accumulation, proliferation, and IFN-γ expression were unaffected by their absence. We found that adoptive cell therapy increases the frequency of monocyte-derived tumor DC3, which possess the capacity to cross-present tumor Ags and induce CTL proliferation. Our findings support the specialized roles of different DC subsets in the regulation of antitumor CTL responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app