Add like
Add dislike
Add to saved papers

Assessment of Transporter-Mediated and Passive Hepatic Uptake Clearance Using Rifamycin-SV as a Pan-Inhibitor of Active Uptake.

The use of in vitro data for the quantitative prediction of transporter-mediated clearance is critical. Central to this evaluation is the use of hepatocytes, since they contain the full complement of transporters and metabolic enzymes. In general, uptake clearance (CLuptake ) is evaluated by measuring the appearance of compound in the cell. Passive clearance (CLpd ) is often determined by conducting parallel studies at 4 °C or by attempting to saturate uptake pathways. Both approaches have their limitations. Recent studies have proposed the use of Rifamycin-SV (RFV) as a pan-inhibitor of hepatic uptake pathways. In our studies, we confirm that transport activity of all major hepatic uptake transporters is inhibited significantly by RFV at 1 mM (OATP1B1, 1B3, and 2B1 = NTCP (80%), OCT1 (65%), OAT2 (60%)). Under these incubation conditions, we found that the free intracellular concentration of RFV is ∼175 μM and that several major CYPs and UGTs can be reversibly inhibited. Using this approach, we also determined CLuptake and CLpd of nine known OATP substrates across three different lots of human hepatocytes. The scaling factors generated for these compounds at 37 °C with RFV and 4 °C were found to be similar. The CLpd of passively permeable compounds like metoprolol and semagacestat were found to be higher at 37 °C compared to 4 °C, indicating a temperature effect on these compounds. In addition, our data also suggests that incorporation of medium concentrations into CLuptake and CLpd calculations may be critical for highly protein bound and highly lipophilic drugs. Overall, our data indicate that RFV, instead of 4 °C, can be reliably used to measure CLuptake and CLpd of drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app