Add like
Add dislike
Add to saved papers

Spinal cord stimulation postconditioning reduces microglial activation through down-regulation of ERK1/2 phosphorylation during spinal cord ischemic reperfusion in rabbits.

Neuroreport 2018 September 27
Microglial activation plays a critical role in spinal cord ischemic reperfusion injury. Spinal cord stimulation preconditioning and postconditioning has shown spinal cord protection in ischemic reperfusion injury in animal studies. However, whether spinal cord stimulation could reduce microglial activation is still unclear. In this study, rabbits experienced 28-min infrarenal aorta occlusion and reperfusion for 8 h, 1, 3, and 7 days correspondingly. Immediately after reperfusion, rabbits received spinal cord stimulation of 2 or 50 Hz for 30 min and daily for a week. The results showed that spinal cord stimulation of 2 Hz reduced microglial activation. Microglial activation was accompanied with up-regulated p-ERK1/2, and microglial inhibition by 2 Hz spinal cord stimulation was associated with down-regulated p-ERK1/2. Spinal cord stimulation increased the expression of IL-1β. Our results revealed, for the first time, that spinal cord stimulation postconditioning suppresses microglial activation during spinal cord ischemic reperfusion by down-regulation of p-ERK1/2, which may be the protective mechanism of spinal cord stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app