Add like
Add dislike
Add to saved papers

H∞ State Estimation for Discrete-Time Nonlinear Singularly Perturbed Complex Networks Under the Round-Robin Protocol.

This paper investigates the H∞ state estimation problem for a class of discrete-time nonlinear singularly perturbed complex networks (SPCNs) under the Round-Robin (RR) protocol. A discrete-time nonlinear SPCN model is first devised on two time scales with their discrepancies reflected by a singular perturbation parameter (SPP). The network measurement outputs are transmitted via a communication network where the data transmissions are scheduled by the RR protocol with hope to avoid the undesired data collision. The error dynamics of the state estimation is governed by a switched system with a periodic switching parameter. A novel Lyapunov function is constructed that is dependent on both the transmission order and the SPP. By establishing a key lemma specifically tackling the SPP, sufficient conditions are obtained such that, for any SPP ≤ a predefined upper bound, the error dynamics of the state estimation is asymptotically stable and satisfies a prescribed H∞ performance requirement. Furthermore, the explicit parameterization of the desired state estimator is given by means of the solution to a set of matrix inequalities, and the upper bound of the SPP is then evaluated in the feasibility of these matrix inequalities. Moreover, the corresponding results for linear discrete-time SPCNs are derived as corollaries. A numerical example is given to illustrate the effectiveness of the proposed state estimator design scheme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app