Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A Parasitic Insensitive Catheter-Based Capacitive Force Sensor for Cardiovascular Diagnosis.

This paper presents a catheter-based capacitive force sensor interface for cardiovascular diagnosis. The force sensor is implemented on a flexible printed circuit board (FPCB) substrate with a force-sensitive polydimethylsiloxane (PDMS), and a force-induced change in a capacitance of the sensor is measured by a precision capacitive sensor interface. To recover the performance degradation caused by the large parasitic capacitance ${\rm C}_{\rm P}$ of a long catheter, we present a parasitic insensitive analog front-end (AFE) with active ${\rm C}_{\rm P}$ cancellation, which employs a charge amplifier and a negative capacitor at the virtual ground of the charge amplifier. The prototype sensor was measured with a force loader in whole blood. The proposed AFE successfully cancels ${\rm C}_{\rm P}$ of 348 pF in a 0.9-m-long sensor and measurement results show the SNR of 53.8 dB and the capacitance resolution of 16 aF, a 19.6 dB improvement by canceling nonideal effect of ${\rm C}_{\rm P}$ . This corresponds to a force resolution of 2.22 gf, which is 9.29 $\times$ reduction compared to the work without the ${\rm C}_{\rm P}$ cancellation. The proposed sensor interface is insensitive to ${\rm C}_{\rm P}$ from hundreds to 1-nF level, and the force-dependent stiffness of two different tissues has been successfully distinguished with an ex-vivo experiment. The proposed sensor interface enables the integration of capacitive force sensors in a smart catheter.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app