Add like
Add dislike
Add to saved papers

Nature-Inspired Multiobjective Epistasis Elucidation from Genome-Wide Association Studies.

In recent years, the detection of epistatic interactions of multiple genetic variants on the causes of complex diseases brings a significant challenge in genome-wide association studies (GWAS). However, most of the existing methods still suffer from algorithmic limitations such as single-objective optimization, intensive computational requirement, and premature convergence. In this paper, we propose and formulate an epistatic interaction multi-objective artificial bee colony algorithm based on decomposition (EIMOABC/D) to address those problems for genetic interaction detection in genome-wide association studies. Firstly, to direct the genetic interaction detection, two objective functions are formulated to characterize various epistatic models; rank probability model is proposed to sort each population into different nondomination levels based on the fast nondominated sorting approach. After that, the mutual information based local search algorithm is proposed to guide the population search for disease model evaluations in an unbiased manner. To validate the effectiveness of EIMOABC/D, we compare EIMOABC/D against seven state-of-the-art methods on 79 epistatic models including eight small-scale epistatic models with marginal effects, eight large-scale epistatic models with marginal effects, sixty large-scale epistatic models without any marginal effect, and one case study. The experimental results indicate that our proposed algorithm EIMOABC/D outperforms seven state-of-the-art methods on those epistatic models. Furthermore, time complexity analysis and parameter analysis are conducted to demonstrate various properties of our proposed algorithm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app