Add like
Add dislike
Add to saved papers

Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs.

The success of deep convolutional neural networks (NNs) on image classification and recognition tasks has led to new applications in very diversified contexts, including the field of medical imaging. In this paper, we investigate and propose NN architectures for automated multiclass segmentation of anatomical organs in chest radiographs (CXRs), namely for lungs, clavicles, and heart. We address several open challenges including model overfitting, reducing number of parameters, and handling of severely imbalanced data in CXR by fusing recent concepts in convolutional networks and adapting them to the segmentation problem task in CXR. We demonstrate that our architecture combining delayed subsampling, exponential linear units, highly restrictive regularization, and a large number of high-resolution low-level abstract features outperforms state-of-the-art methods on all considered organs, as well as the human observer on lungs and heart. The models use a multiclass configuration with three target classes and are trained and tested on the publicly available Japanese Society of Radiological Technology database, consisting of 247 X-ray images the ground-truth masks for which are available in the segmentation in CXR database. Our best performing model, trained with the loss function based on the Dice coefficient, reached mean Jaccard overlap scores of 95% for lungs, 86.8% for clavicles, and 88.2% for heart. This architecture outperformed the human observer results for lungs and heart.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app