Add like
Add dislike
Add to saved papers

Mathematical Modeling for Description of Oscillation Suppression Induced by Deep Brain Stimulation.

A mathematical modeling for description of oscillation suppression by deep brain stimulation (DBS) is explored in this paper. High-frequency DBS introduced to the basal ganglia network can suppress pathological neural oscillations that occur in the Parkinsonian state. However, selecting appropriate stimulation parameters remains a challenging issue due to the limited understanding of the underlying mechanisms of the Parkinsonian state and its control. In this paper, we use a describing function analysis to provide an intuitive way to select the optimal stimulation parameters based on a biologically plausible computational model of the Parkinsonian neural network. By the stability analysis using the describing function method, effective DBS parameter regions for inhibiting the pathological oscillations can be predicted. Additionally, it is also found that a novel sinusoidal-shaped DBS may become an alternative stimulation pattern and expends less energy, but with a different mechanism. This paper provides new insight into the possible mechanisms underlying DBS and a prediction of optimal DBS parameter settings, and even suggests how to select novel DBS wave patterns for the treatment of movement disorders, such as Parkinson's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app