Add like
Add dislike
Add to saved papers

Autonomic Nervous System Measurement in Hyperbaric Environments using ECG and PPG signals.

The main aim of this work was to characterise the Autonomic Nervous System (ANS) response in hyperbaric environments using electrocardiogram (ECG) and pulse-photoplethysmogram (PPG) signals. To that end, 26 subjects were introduced into a hyperbaric chamber and five stages with different atmospheric pressures (1 atm; descent to 3 and 5 atm; ascent to 3 and 1 atm) were recorded. Respiratory information was extracted from the ECG and PPG signals and a combined respiratory rate was studied. This information was also used to analyse Heart Rate Variability (HRV) and Pulse Rate Variability (PRV). The database was cleaned by eliminating those cases where the respiratory rate dropped into the low frequency band (LF: 0.04-0.15 Hz) and those in which there was a discrepancy between the respiratory rates estimated using the ECG and PPG signals. Classical temporal and frequency indices were calculated in such cases. The ECG results showed a time-related dependency, with the heart rate and sympathetic markers (normalised power in LF and LF/HF ratio) decreasing as more time was spent inside the hyperbaric environment. A dependency between the atmospheric pressure and the parasympathetic response, as reflected in the high frequency band power (HF: 0.15-0.40 Hz), was also found, with power increasing with atmospheric pressure. The combined respiratory rate also reached a maximum in the deepest stage, thus highlighting a significant difference between this stage and the first one. The PPG data gave similar findings and also allowed the oxygen saturation to be computed, therefore we propose the use of this signal for future studies in hyperbaric environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app