Add like
Add dislike
Add to saved papers

Distributed Online One-Class Support Vector Machine for Anomaly Detection Over Networks.

Anomaly detection has attracted much attention in recent years since it plays a crucial role in many domains. Various anomaly detection approaches have been proposed, among which one-class support vector machine (OCSVM) is a popular one. In practice, data used for anomaly detection can be distributively collected via wireless sensor networks. Besides, as the data usually arrive at the nodes sequentially, online detection method that can process streaming data is preferred. In this paper, we formulate a distributed online OCSVM for anomaly detection over networks and get a decentralized cost function. To get the decentralized implementation without transmitting the original data, we use a random approximate function to replace the kernel function. Furthermore, to find an appropriate approximate dimension, we add a sparse constraint into the decentralized cost function to get another one. Then we minimize these two cost functions by stochastic gradient descent and derive two distributed algorithms. Some theoretical analysis and experiments are performed to show the effectiveness of the proposed algorithms. Experimental results on both synthetic and real datasets reveal that both of the proposed algorithms achieve low misdetection rates and high true positive rates. Compared with other state-of-the-art anomaly detection methods, the proposed distributed algorithms not only show good anomaly detection performance, but also require relatively short running time and low CPU memory consumption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app