Add like
Add dislike
Add to saved papers

Nonlinear Frequency-Sweep Correction of Tunable Electromagnetic Sources.

Tunable electromagnetic (EM) sources, such as voltage-controlled oscillators, micro-electromechanical systems, or diode lasers are often required to be linear during frequency-sweep modulation. In many cases, it might also be sufficient that the degree of the nonlinearity can be well controlled. Without further efforts, these conditions are rarely achieved using free-running sources. Based on a predistortion voltage ramp, we develop in this paper a simple and universal method that minimizes the nonlinear frequency response of tunable EM sources. Using a current-driven quantum cascade laser as an example, we demonstrate that the nonlinearity can easily be reduced by a factor of ten when using a single distortion parameter . In the investigation of the IR absorption spectrum of ozone at 10 , an even better reduction of the frequency-scale error by two orders of magnitude is obtained by using the predistortion method to generate an essentially purely quadratic sweep frequency dependence that can be inverted easily to retrieve precise molecular line positions. After having tested our method on a variety of EM sources, we anticipate a wide range of applications in a variety of fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app