Add like
Add dislike
Add to saved papers

Reprogramming of Extraembryonic Trophoblast Stem Cells into Embryonic Pluripotent State by Fusion with Embryonic Stem Cells.

Pluripotential reprogramming has been examined using various technologies, including nuclear transfer, cell fusion, and direct reprogramming. Many studies have used differentiated cells for reprogramming experiments, and nearly all type of somatic cells can acquire pluripotency. However, within the embryo, other cells types are present in addition to somatic cells. The blastocyst stage embryo consists of two main types of cells, inner cell mass and trophectoderm (TE). TE cells are the first differentiated form of the totipotent zygote and differ from epiblast cells. Thus, we examined whether extraembryonic cells can be reprogrammed using a cell-cell fusion method. Trophoblast stem cells (TSCs), which can be obtained from the TE, are known to acquire pluripotency by transcription factor Oct4 overexpression or somatic cell nuclear transfer. In this study, we demonstrated that TSCs can acquire pluripotent properties by cell fusion with embryonic stem cells (ESCs). TSC-ESC hybrids reactivated Oct4-GFP and displayed self-renewal properties. They expressed the pluripotency markers Oct4 and Nanog, whereas the expression of Cdx2 and Tead4, trophoblast lineage markers, was diminished. Moreover, these cells developed into three germ layers similarly to other pluripotent stem cells. RNA-seq analysis showed that global gene expression patterns of TSC-ESC hybrids are more similar to ESCs than TSCs. Thus, we demonstrated that TSCs successfully complete reprogramming and acquire pluripotency by cell fusion-induced reprogramming.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app