Add like
Add dislike
Add to saved papers

Interaction of HF, HBr, HCl and HI Molecules with Carbon Nanotubes.

The present work applies the density functional theory (DFT) to study the interactions between armchair (n,n) single walled carbon nanotubes (SWCNTs) and hydrogen halides confined along the nanotube axis and perpendicular to it. Calculations are performed using the CAM-B3LYP functional. According to the hydrogen halides orientation and the internal diameter of CNTs hollow space, HF, HCl, HBr and HI behave differently. The nanoconfinement alters the charge distribution and the dipolar moment. The encapsulated hydrogen fluoride (HF) molecule is stable along and perpendicular to the nanotubes (5,5) and (6,6) axis. The hydrogen chloride (HCl), hydrogen bromide (HBr) and hydrogen iodide (HI) form stable systems inside the nanotube (6,6) only at the perpendicular orientation. In addition, other phenomena are observed such as leaving the nanotube or decreasing the bond length of the molecule and even the creation of covalent bind between the guest molecule and the host nanotube.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app