Add like
Add dislike
Add to saved papers

Optimization of combination therapy for chronic myeloid leukemia with dosing constraints.

In this work, we demonstrate a mathematical technique for optimizing combination regimens with constraints. We apply the technique to a mathematical model for treatment of patients with chronic myeloid leukemia. The in-host model includes leukemic cell and immune system dynamics during treatment with tyrosine kinase inhibitors and immunomodulatory compounds. The model is minimal (semi-mechanistic) with just enough detail that all relevant therapeutic effects can be represented. The regimens are optimized to yield the highest possible reduction in disease burden, taking into account dosing constraints and side effect risks due to drug exposure. We compare the following three types of regimens: (1) regimens that are restricted to certain discrete dose levels, which can only change every three months; (2) optimal regimens determined using optimal control; and (3) regimens that are piecewise-constant like the first type of regimen, but are obtained as approximations to the optimal control regimens. All three types of regimens result in similar outcomes, but the last one is easy to compute in addition to being clinically feasible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app