Add like
Add dislike
Add to saved papers

Tamoxifen overrides autophagy inhibition in Beclin-1-deficient glioma cells and their resistance to adenovirus-mediated oncolysis via upregulation of PUMA and BAX.

Oncogene 2018 July 11
Autophagy is an evolutionarily conserved process regulating cellular homeostasis via digestion of dysfunctional proteins and whole cellular organelles by mechanisms, involving their enclosure into double-membrane vacuoles that are subsequently fused to lysosomes. Glioma stem cells utilize autophagy as a main mechanism of cell survival and stress response. Most recently, we and others demonstrated induction of autophagy in gliomas in response to treatment with chemical drugs, such as temozolomide (TMZ) or oncolytic adenoviruses (Ads). As autophagy has been implicated in the mechanism of Ad-mediated cell killing, autophagy deficiency in some glioma tumors could be the reason for their resistance to oncolysis. Despite the observed connection, the exact relationship between autophagy-activating cell signaling and adenoviral infection remains unclear. Here, we report that inhibition of autophagy in target glioma cells induces their resistance to killing by oncolytic agent CRAd-S-5/3. Furthermore, we found that downregulation of autophagy inducer Beclin-1 inhibits replication-competent Ad-induced oncolysis of human glioma by suppressing cell proliferation and inducing premature senescence. To overcome the autophagy-deficient state of such glioma cells and restore their susceptibility to oncolytic Ad infection, we propose treating glioma tumors with an anticancer drug tamoxifen (TAM) as a means to induce apoptosis in Ad-targeted cancer cells via upregulation of BAX/PUMA genes. In agreement with the above hypothesis, our data suggest that TAM improves susceptibility of Beclin-1-deficient glioma cells to CRAd-S-5/3 oncolysis by means of activating autophagy and pro-apoptotic signaling pathways in the target cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app