Add like
Add dislike
Add to saved papers

Increased separability of K-edge nanoparticles by photon-counting detectors for spectral micro-CT.

BACKGROUND: X-ray CT/micro-CT methods with photon-counting detectors (PCDs) and high Z materials are a hot research topic. One method using PCDs allows for spectral imaging in 5 energy windows while conventional X-ray detectors only collect energy-integrating data.

OBJECTIVE: To demonstrate the enhanced separation of contrast materials by using PCDs, multivariate analysis, and linear discriminant methods.

METHODS: Phantoms containing iodine and aqueous nanomaterials were scanned on a MARS spectral micro-CT. Image volumes were segmented into separate material-specific populations. Contrast comparisons were made by calculating T2 test statistics in the univariate, pseudo-conventional and multivariate, spectral CT data sets. Separability after Fisher discriminant analysis (FDA) was also assessed.

RESULTS: The T2 values calculated for material comparisons increased as a result of the spectral expansion. The majority of the tested contrast agents showed increased T2 values by a factor of ∼2 -3. The total significant T2 statistics in the pure and mixed lanthanide image sets increased in the spectral data set.

CONCLUSION: This work consolidates the groundwork for photon-counting-based material decomposition with micro-CT, facilitating future development of novel nanomaterials and their preclinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app