Add like
Add dislike
Add to saved papers

Preparation and characterization of nanosilica copper (II) complexes of amino acids.

The frequent use of traditional copper-based microbicides has led to the growing risk of toxicity to non-target organisms in the environment. In this work, nanosilica was conjugated with copper(II) complexes of L-glutamate (or glycine) to develop novel copper-based microbicides with good microbicidal activity, systemicity and desired safety to plant, and the obtained nanosilica-L-glutamate copper complexes (Silica-Glu-Cu) and nanosilica-glycine copper complexes (Silica-Gly-Cu) were characterized and evaluated by FT-IR, SEM, TEM, and XPS. The results showed that Silica-Glu-Cu and Silica-Gly-Cu exhibited satisfactory activities and long effective periods against Phytophthora capsica and Botrytis cinereal and could move upward and downward freely in cucumber seedlings. Moreover, Silica-Glu-Cu increased the fresh weights of cucumber and wheat seedlings by 0.4-6.4% at the concentrations of 50-200 mg/L of copper. Thus, the novel copper-based microbicides can reduce the frequency of using copper-based bactericides and phytotoxicity to plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app