Add like
Add dislike
Add to saved papers

Comparative phosphoproteome analysis upon ethylene and abscisic acid treatment in Glycine max leaves.

Abscisic acid (ABA) and ethylene play key roles in growth and development of plants. Several attempts have been made to investigate the ABA and ethylene-induced signaling in plants, however, the involvement of phosphorylation and dephosphorylation in fine-tuning of the induced response has not been investigated much. Here, a phosphoproteomic analysis was carried out to identify the phosphoproteins in response to ABA, ethylene (ET) and combined ABA + ET treatments in soybean leaves. Phosphoproteome analysis led to the identification of 802 phosphopeptides, representing 422 unique protein groups. A comparative analysis led to the identification of 40 phosphosites that significantly changed in response to given hormone treatments. Functional annotation of the identified phosphoproteins showed that these were majorly involved in nucleic acid binding, signaling, transport and stress response. Localization prediction showed that 67% of the identified phosphoproteins were nuclear, indicating their potential involvement in gene regulation. Taken together, these results provide an overview of the ABA, ET and combined ABA + ET signaling in soybean leaves at phosphoproteome level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app